Research
Our research interests include the synthesis of functional nanosystems, controlled polymer architectures and dynamic supramolecular assemblies through molecular recognition processes.
The underlying theme of our research lies at the interface between synthetic organic efforts on small molecules and macroscopic properties at the materials level, developing a macro-organic approach to chemistry. Dynamic supramolecular self-assembly of materials will be an area of great importance in the coming years, allowing for innovations in nanotechnology and at the biological and chemical interfaces.
We are particularly interested in exploring topics such as water-soluble and stimuli-responsive materials, template and imprinting technologies of functional polymers for use in chiral separations and enantioselective catalysis, and controlling material morphologies and architectures both in solution and in the solid state through rational design and a multi-step, hierarchical self-assembly process.