skip to primary navigationskip to content

Natural Material Innovation

Sustainable Living

Studying at Cambridge

 

Dr Rob Foster

Biography:

Rob has a BA in Philosophy from the University of Wales, Cardiff, and an MEng in Civil & Architectural Engineering from the University of Bath. He spent two years in practice as a structural engineer in London before coming to Cambridge to carry out a PhD in the Department of Engineering. Following his PhD, Rob spent time as a post-doctoral Research Associate in the Department of Architecture and as Senior Lecturer in Structures in the School of Civil Engineering at the University of Queensland in Brisbane, Australia.

Research Interests

Rob's research addresses ways in which structural engineering can help us to meet the infrastructure needs of a rapidly growing urban population while maintaining the quality of the natural world around us. He is interested in the relationship between local and global behaviour in structural systems and the implications of this for design. His work explores ways in which better structural assessment, reconfiguration and retrofit can help us make better use of our enormous inventory of existing concrete structures;  the lightweighting and vertical extension of existing buildings; and the use of engineered timber for the design of sustainable tall buildings and urban infrastructure.

RSS Feed Latest news

FLOWER approved by the Interreg VA France (Channel) England Programme

Jun 15, 2018

Development of innovative flax fibre reinforcements for composite applications

A strategy to improve the processing of softwood to sustainable biomaterials and biofuels

Sep 21, 2017

In a paper recently published in Biotechnology for Biofuels we are looking at a possible way to improve the processing of timber derived from conifers to feedstock used for sustainable manufacturing of novel biomaterials and biofuels. Softwood, as any other timber, is predominantly composed of plant secondary cell walls - an intricate matrix of polysaccharides and phenolic compounds which surround wood cells. Due to abundance of trees, plant secondary cell walls are the largest, renewable, resource of bioenergy on the planet.

Green method developed for making technical fibres

Sep 07, 2017

The team at the Centre for Natural Material Innovation has designed a super stretchy, strong and sustainable material that mimics the qualities of spider silk and viscose rayon, and is ‘spun’ from a material that is 98% water.

View all news